Sources

  • Albrecht, K., Abeler, J., Weber, B., and Falk, A. (2014). The brain correlates of the effects of monetary and verbal rewards on intrinsic motivation. Front. Neurosci. 8:303. doi: 10.3389/fnins.2014.00303
     

  • A.F.T. Arnsten Through the looking glass: differential noradrenergic modulation of prefrontal cortical function. Neural Plast., 7 (2000), pp. 133-146
     

  • Armour J A (1994), Neurocardiology: Anatomical and Functional Principles, New York, NY, Oxford University Press: 3-19.
     

  • Armour J. A. (2004), Cardiac neuronal hierarchy in health and disease, American 4 journal of physiology, regulatory, integrative and comparative physiology. Aug; 287(2):R262-71.
     

  • Audesirk, T., Audesirk, G., & Byers, B. E. (2008). Biology: Life on earth with physiology. Upper Saddle River, NJ: Pearson Prentice Hall. Bekris, S., Antoniou, K., Daskas, S., Papadopoulou-Daifoti, Z., 2005. Behavioural and neurochemical effects induced by chronic mild stress applied to two different rat strains. Behavioural Brain Research 161, 45–59. 117, 257–262.
     

  • Belsky J, Pluess M, Widaman KF. Confirmatory and competitive evaluation of alternative gene-environment interaction hypotheses. Journal of Child Psychology and Psychiatry. 2013;54:1135 1143. doi:http://dx.doi.org/10.1111/jcpp.12075.
     

  • Crockett MJ, Siegel JZ, Kurth-Nelson Z, Ousdal OT, Story G, Frieband C, Grosse- Debiec J, LeDoux JE. Noradrenergic signaling in the amygdala contributes to the reconsolidation of fear memory: treatment implications for PTSD. Ann. NY Acad. Sci. 2006;1071:521–524. 
     

  • Deci, E. L., and Ryan, R. M. (1985). Intrinsic Motivation and Self-determination in Human Behavior. New York, NY: Plenum Press.
     

  • Dickerson SS, Kemeny ME. Acute stressors and cortisol responses: A theoretical integration and synthesis of laboratory research. Psychological Bulletin. 2004;130:355–391.
     

  • Drewe, E. (1975). Go-no-go learning after frontal lobe lesion in humans. Cortex, 11:8-16.
     

  • Etkin A, Prater KE, Schatzberg AF, Menon V, Greicius MD. Disrupted amygdalar subregion functional connectivity and evidence of a compensatory network in Generalized Anxiety Disorder. Archives of General Psychiatry. 2009;66:1361–1372.
     

  • Ghashghaei HT, Barbas H. Pathways for emotion: interactions of prefrontal and anterior temporal pathways in the amygdala of the rhesus monkey. Neuroscience. 2002;115:1261–1279. 
     

  • Goldman-Rakic PS. In: Handbook of Physiology, The Nervous System, Higher Functions of the Brain. Plum F, editor. Vol. V. Bethesda: American Physiological Society; 1987. pp. 373–417. This classic paper describes the parallel anatomical circuits that underlie representational knowledge.
     

  • Grant KE, Compas BE, Stuhlmacher AF, Thurm AE, McMahon SD, Halpert JA. Stressors and child and adolescent psychopathology: moving from markers to mechanisms of risk. Psychological Bulletin. 2003;129(3):447
     

  • Goldman-RakicThe prefrontal landscape: implications of functional architecture for understanding human mentation and the central executive. Phil. Trans. R. Soc. Lond., 351 (1996), pp. 1445-1453
     

  • Gusnard DA, Akbudak E, Shulman GL, Raichle ME. Medial prefrontal cortex and self- referential mental activity: relation to a default mode of brain function. Proceedings of the National Academy of Science USA; 2001. pp. 4259–64.
     

  • G.J. Quirk, D. MuellerNeural mechanisms of extinction learning and retrieval Neuropsychopharmacology, 33 (2008), pp. 56-72
     

  • H. Barbas, M. Medalla, O. Alade, J. Suski, B. Zikopoulos, P. LeraRelationship of prefrontal connections to inhibitory systems in superior temporal areas in the rhesus monkey.Cereb. Cortex, 15 (2005), pp. 1356-1370
     

  • Hostinar CE, Gunnar MR. The developmental effects of early life stress: An overview of current theoretical frameworks. Current Directions in Psychological Science. 2013;22:400 406.doi:http://dx.doi.org/10.1177/0963721413488889. 
     

  • Ikemoto, S., and Panksepp, J. (1999). The role of nucleus accumbens dopamine in motivated behavior: a unifying interpretation with special reference to reward- seeking. Brain Res. Rev. 31, 6–41. doi: 10.1016/s0165-0173(99)00023-5
     

  • Kuypers, H. Anatomy of the descending pathways. In V. Brooks, ed. The Nervous System, Handbook of Physiology, vol. 2. Baltimore: Williams and Wilkins, 1981.
     

  • L.L. Chao, R.T. KnightHuman prefrontal lesions increase distractibility to irrelevant sensory inputs. Neuroreport, 6 (1995), pp. 1605-1610
     

  • Lupien SJ, McEwen BS, Gunnar MR, Heim C. Effects of stress throughout the lifespan on the brain, behaviour and cognition. Nat Rev Neurosci 10: 434-445
     

  • Mahar I, Bambico FR, Mechawar N, Nobrega JN. Stress, serotonin, and hippocampal neurogenesis in relation to depression and antidepressant effects. Neurosci Biobehav Rev. 2014 Jan;38:173-92.
     

  • Manes F., Sahakian B., Clark L., Rogers R., Antoun N., Aitken M., Robbins T. Decision- making processes following damage to the prefrontal cortex. Brain. 2002;125(Pt3):624–639.
     

  • Maturation of the prefrontal cortex. (n.d.). U.S. Department of Health and Human Services. Retrieved from http://www.hhs.gov/opa/familylife/tech_assistance/etraining/adolescent_brain/Development/prefrontal_cortex/
     

  • McEwen BS, Gianaros PJ. Stress- and allostasis-induced brain plasticity. Annu Rev Med. 2011;62:431–445.
     

  • Monroe SM. Modern approaches to conceptualizing and measuring life stress. Annual Review of Clinical Psychology. 2008;4:33–52.
     

  • Miller, L. (1985). Cognitive risk taking after frontal or temporal lobectomy. I. The synthesis of fragmented visual information. Neuropsychologia, 23:359-369.
     

  • Miller EK, Cohen JD. An integrative theory of prefrontal cortex function. Annual Review of Neuroscience. 2001;24:167–202. 
     

  • Milner, B. Some effects of frontal lobectomy in man. In J. Warren and K. Akert, eds. The Frontal Granular Cortex and Behavior. New York: McGraw-Hill, 1964.
     

  • Muhlert N, Lawrence AD. Brain structure correlates of emotion-based rash impulsivity. Phan KL, Wager T, Taylor SF, Liberzon I. Functional neuroanatomy of emotion: a meta-analysis of emotion activation studies in PET and fMRI. NeuroImage. 2002;16:331–348
     

  •  Price JL, Amaral DG. An autoradiographic study of the projections of the central nucleus of the monkey amygdala. J. Neurosci. 1981;1:1242–1259.  
     

  • Price JL, Carmichael ST, Drevets WC. Networks related to the orbital and medial prefrontal cortex; a substrate for emotional behavior? Prog. Brain Res. 1996;107:523–536.
     

  • Quirk GJ, Beer JS. Prefrontal involvement in the regulation of emotion: convergence of rat and human studies. Current Opinion in Neurobiology. 2006;16:723–7.
     

  • Ryan, R. M., and Deci, E. L. (2017). Self-determination theory: Basic Psychological Needs in Motivation Development and Wellness. New York, NY: Guilford Press.
     

  • Ryan, R. M., and Deci, E. L. (2000). Self-determination theory and the facilitation of intrinsic motivation, social development, and well-being. Am. Psychol. 55, 68–78. doi: 10.1037/0003-066x.55.1.68
     

  • Rueskamp JM, Dayan P, Dolan RJ. Dissociable Effects of Serotonin and Dopamine on the Valuation of Harm in Moral Decision Making. Curr Biol. 2015 Jul20;25(14):1852-9.
     

  • Rosenkranz JA, Moore H, Grace AA. The prefrontal cortex regulates lateral amygdala neuronal plasticity and responses to previously conditioned stimuli. Journal of Neuroscience. 2003;23:11054–64
     

  • Semmes, J., Weinstein, S., Ghent, L., & Teuber, H. (1963). Impaired orientation in personal and extrapersonal space. Brain, 86:747-772.
     

  • Simons JS, Henson RN, Gilbert SJ, Fletcher PC. Separate forms of realty monitoring by the anterior prefrontal cortex. J. Cognitive. Neuroscience. 2008;20:447–457. 
     

  • Stuss, D. et al. (1985). Subtle neuropsychological deficits in patients with good recovery after closed head injury. Neurosurgery, 17, 41-47.
     

  • Walker, E., & Blumer, D. The localization of sex in the brain. In K.J. Zulch, O. Creutzfeldt, and G. Galbraith, eds. Cerebral Localization, Berlin and New York: Springer-Verlag, 1975.
     

  • Wolf RC, Herringa RJ. Prefrontal-Amygdala Dysregulation to Threat in Pediatric Post- Traumatic Stress Disorder. Neuropsychopharmacology. 2015 Jul 14.
     

  • U.S. Department of Health and Human Services (HHS), Office of the Surgeon General, Facing Addiction in America: The Surgeon General’s Report on Alcohol, Drugs, and Health. Washington, DC: HHS, November 2016. (Chapter 4).
     

  • U.S. Department of Health and Human Services (HHS), Office of the Surgeon GeneralFacing Addiction in America: The Surgeon General’s Report on Alcohol, Drugs, and Health. Washington, DC: HHS, November 2016. (Chapter 2).
     

  •  Center on the Developing Child at Harvard University (2016). From Best Practices to Breakthrough Impacts: A Science-Based Approach to Building a More Promising Future for Young Children and Families.
     

  • Center on the Developing Child at Harvard University (2014). A Decade of Science Informing Policy: The Story of the National Scientific Council on the Developing Child. http://www.developingchild.net
     

  • Miller MW. Development of projection and local circuit neurons in neocortex. In: Peters A, Jones EG, editors. Cerebral Cortex. Vol 7. New York: Plenum; 1988. pp. 133–176.
     

  • Greenough WT, Withers GS, Wallace CS. 1990. Morphological changes in the nervous system arising from behavioral experience: What is the evidence that they are involved in learning and memory? The Biology of Memory, Symposia Medica Hoechst, eds Squire LR, Lindenlaub E (Springer, New York), Vol 23, pp 159–185.
     

  • Gómez-Pinilla F, Lee JWK, Cotman CW. Distribution of basic fibroblast growth factor in the developing rat brain. Neuroscience. 1994;61:911–923.
     

  •  Muhammad A, Kolb B. Prenatal tactile stimulation attenuates drug-induced behavioral sensitization, modifies behavior, and alters brain architecture. Brain Res. 2011;1400:53–65.
     

  • Greenough WT, Chang FF. Plasticity of synapse structure and pattern in the cerebral cortex. In: Peters A, Jones EG, editors. Cerebral Cortex. Vol 7. New York: Plenum; 1989. pp. 391–440.
     

  • Sirevaag AM, Greenough WT. A multivariate statistical summary of synaptic plasticity measures in rats exposed to complex, social and individual environments. Brain Res. 1988;441:386–392. 
     

  • Kolb B, Gibb R, Gorny G. Experience-dependent changes in dendritic arbor and spine density in neocortex vary qualitatively with age and sex. Neurobiol Learn Mem. 2003;79(1):1–10. 
     

  • Anda RF, et al. The enduring effects of abuse and related adverse experiences in childhood. A convergence of evidence from neurobiology and epidemiology. Eur Arch Psychiatry Clin Neurosci. 2006;256(3):174–186.
     

  • Kolb B, Gorny G, Söderpalm AH, Robinson TE. Environmental complexity has different effects on the structure of neurons in the prefrontal cortex versus the parietal cortex or nucleus accumbens. Synapse. 2003;48:149–153. 
     

  • Comeau WL, McDonald RJ, Kolb BE. Learning-induced alterations in prefrontal cortical dendritic morphology. Behav Brain Res. 2010;214:91–101.
     

  • Mychasiuk R, et al. Parental enrichment and offspring development: Modifications to brain, behavior and the epigenome. Behav Brain Res. 2012;228:294–298. 
     

  • Van den Bergh BR, Marcoen A. High antenatal maternal anxiety is related to ADHD symptoms, externalizing problems, and anxiety in 8- and 9-year-olds. Child Dev. 2004;75:1085–1097. 
     

  • Weinstock M. The long-term behavioural consequences of prenatal stress. Neurosci Biobehav Rev. 2008;32:1073–1086. 
     

  • Liston C, et al. Stress-induced alterations in prefrontal cortical dendritic morphology predict selective impairments in perceptual attentional set-shifting. J Neurosci. 2006;26:7870–7874.
     

  •  Mychasiuk R, Gibb R, Kolb B. Prenatal stress alters dendritic morphology and synaptic connectivity in the prefrontal cortex and hippocampus of developing offspring. Synapse. 2012;66:308–314. 
     

  • Muhammad A, Kolb B. Mild prenatal stress-modulated behavior and neuronal spine density without affecting amphetamine sensitization. Dev Neurosci. 2011;33:85–98. 
     

  • Murmu MS, et al. Changes of spine density and dendritic complexity in the prefrontal cortex in offspring of mothers exposed to stress during pregnancy. Eur J Neurosci. 2006;24:1477–1487. 
     

  • Mychasiuk R, Ilnytskyy S, Kovalchuk O, Kolb B, Gibb R. Intensity matters: Brain, behaviour and the epigenome of prenatally stressed rats. Neuroscience. 2011;180:105–110.
     

  • Mychasiuk R, Gibb R, Kolb B. Prenatal stress produces sexually dimorphic and regionally specific changes in gene expression in hippocampus and frontal cortex of developing rat offspring. Dev Neurosci. 2011;33:531–538. 
     

  • Mychasiuk R, et al. Prenatal bystander stress alters brain, behavior, and the epigenome of developing rat offspring. Dev Neurosci. 2011;33:159–169. 
     

  • Mychasiuk R, Gibb R, Kolb B. Prenatal bystander stress induces neuroanatomical changes in the prefrontal cortex and hippocampus of developing rat offspring. Brain Res. 2011;1412:55–62. 
     

  • Myers MM, Brunelli SA, Squire JM, Shindeldecker RD, Hofer MA. Maternal behavior of SHR rats and its relationship to offspring blood pressures. Dev Psychobiol. 1989;22(1):29–53. 
     

  • Weaver ICG, et al. Epigenetic programming by maternal behavior. Nat Neurosci. 2004;7:847–854.
     

  • Weaver ICG, Meaney MJ, Szyf M. Maternal care effects on the hippocampal transcriptome and anxiety-mediated behaviors in the offspring that are reversible in adulthood. Proc Natl Acad Sci USA. 2006;103:3480–3485. 
     

  • Fenoglio KA, Brunson KL, Baram TZ. Hippocampal neuroplasticity induced by early- life stress: Functional and molecular aspects. Front Neuroendocrinol. 2006;27(2):180–192. 
     

  • Helmeke C, et al. Paternal deprivation during infancy results in dendrite- and time- specific changes of dendritic development and spine formation in the orbitofrontal cortex of the biparental rodent Octodon degus. Neuroscience. 2009;163:790–798. 
     

  • Seidel K, Poeggel G, Holetschka R, Helmeke C, Braun K. Paternal deprivation affects the development of corticotrophin-releasing factor-expressing neurones in prefrontal cortex, amygdala and hippocampus of the biparental Octodon degus. J Neuroendocrinol. 2011;23:1166–1176. 
     

  • Helmeke C, Ovtscharoff W, Jr, Poeggel G, Braun K. Juvenile emotional experience alters synaptic inputs on pyramidal neurons in the anterior cingulate cortex. Cereb Cortex. 2001;11:717–727. 
     

  • Muhammad A, Kolb B. Maternal separation altered behavior and neuronal spine density without influencing amphetamine sensitization. Behav Brain Res. 2011;223:7–16. 
     

  • Harlow HF, Harlow MK. The affectional systems. In: Schier A, Harlow HF, Stollnitz F, editors. Behaviour of Nonhuman Primates. Vol 2. New York: Academic; 1965.
     

  • Pellis S, Pellis V. The Playful Brain. New York: Oneworld Publications; 2010.
     

  • Pellis SM, et al. The effects of orbital frontal cortex damage on the modulation of defensive responses by rats in playful and nonplayful social contexts. Behav Neurosci. 2006;120:72–84. 
     

  • Bell HC, Pellis SM, Kolb B. Juvenile peer play experience and the development of the orbitofrontal and medial prefrontal cortices. Behav Brain Res. 2010;207:7–13. 
     

  • Muhammad A, Hossain S, Pellis S, Kolb B. Tactile stimulation during development attenuates amphetamine sensitization and structurally reorganizes prefrontal cortex and striatum in a sex-dependent manner. Behav Neurosci. 2011;125:161–174. 
     

  • Robinson TE, Kolb B. Structural plasticity associated with exposure to drugs of abuse. Neuropharmacology. 2004;47(Suppl 1):33–46. 
     

  • Muhammad A, et al. Prenatal nicotine exposure alters neuroanatomical organization in the developing brain. Synapse. 2012 doi: 10.1002/syn21589. 
     

  • Frost DO, Page SC, Carroll C, Kolb B. Early exposure to haloperidol or olanzapine induces long-term alterations of dendritic form. Synapse. 2010;64:191–199.
     

  • Milstein JA, et al. Long-term neurodevelopmental sequelae of adolescent olanzapine exposure: Behavioral effects. Soc Neurosci Abst. 2010;168(36):12.
     

  • Diaz Heijtz R, Kolb B, Forssberg H. Can a therapeutic dose of amphetamine during pre- adolescence modify the pattern of synaptic organization in the brain? Eur J Neurosci. 2003;18:3394–3399. 
     

  • Hamilton DA, et al. Prenatal exposure to moderate levels of ethanol alters social behavior in adult rats: Relationship to structural plasticity and immediate early gene expression in frontal cortex. Behav Brain Res. 2010;207:290–304. 
     

  • Lawrence RC, Otero NKH, Kelly SJ. Selective effects of perinatal ethanol exposure in medial prefrontal cortex and nucleus accumbens. Neurotoxicol Teratol. 2012;34(1):128–135.
     

  • Mychasiuk R, et al. Is prenatal VPA exposure in rat a viable model of autism? A comprehensive behavioral and anatomical analysis. Dev Neurosci. 2012;10:268–276.
     

  • Rinaldi T, Perrodin C, Markram H. Hyper-connectivity and hyper-plasticity in the medial prefrontal cortex in the valproic Acid animal model of autism. Front Neural Circuits. 2008;2:4


  •  Markram K, Rinaldi T, La Mendola D, Sandi C, Markram H. Abnormal fear conditioning and amygdala processing in an animal model of autism. Neuropsychopharmacology. 2008;33:901–912.
     

  • Ornoy A. Valproic acid in pregnancy: How much are we endangering the embryo and fetus? Reprod Toxicol. 2009;28(1):1–10.
     

  • Williams G, et al. Fetal valproate syndrome and autism: Additional evidence of an association. Dev Med Child Neurol. 2001;43:202–206. 
     

  • Abraham WC, Bear MF. Metaplasticity: The plasticity of synaptic plasticity. Trends Neurosci. 1996;19:126–130. 
     

  • Hamilton D, Kolb B. Nicotine, experience, and brain plasticity. Behav Neurosci. 2005;119:355–365.
     

  • Kolb B, Gorny G, Li Y, Samaha AN, Robinson TE. Amphetamine or cocaine limits the ability of later experience to promote structural plasticity in the neocortex and nucleus accumbens. Proc Natl Acad Sci USA. 2003;100:10523–10528. 
     

  • Comeau W, Hastings E, Kolb B. Differential effect of pre and postnatal FGF-2 following medial prefrontal cortical injury. Behav Brain Res. 2007;180:18–27. 
     

  • Thompson BL, Levitt P, Stanwood GD. Prenatal exposure to drugs: Effects on brain development and implications for policy and education. Nat Rev Neurosci. 2009;10:303–312. 
     

  • Andersen SL, Navalta CP. Annual Research Review: New frontiers in developmental neuropharmacology: Can long-term therapeutic effects of drugs be optimized through carefully timed early intervention? J Child Psychol Psychiatry. 2011;52:476–503. 
     

  • Kolb B, Stewart J. Sex-related differences in dendritic branching of cells in the prefrontal cortex of rats. J Neuroendocrinol. 1991;3:95–99. 
     

  • Juraska J. The structure of the cerebral cortex: Effects of gender and the environment. In: Kolb B, Tees R, editors. The Cerebral Cortex of the Rat. Cambridge, MA: MIT Press; 1990. pp. 483–506.
     

  • McCarthy MM, et al. The epigenetics of sex differences in the brain. J Neurosci. 2009;29:12815–12823. 
     

  • Jessen HM, Auger AP. Sex differences in epigenetic mechanisms may underlie risk and resilience for mental health disorders. Epigenetics. 2011;6:857–861.
     

  • Kolb B, Mychasiuk R, Williams P, Gibb R. Brain plasticity and recovery from early cortical injury. Dev Med Child Neurol. 2011;53(Suppl 4):4–8.
     

  • Brenhouse HC, Sonntag KC, Andersen SL. Transient D1 dopamine receptor expression on prefrontal cortex projection neurons: Relationship to enhanced motivational salience of drug cues in adolescence. J Neurosci. 2008;28:2375–2382. 
     

  • Franklin TB, Linder N, Russig H, Thöny B, Mansuy IM. Influence of early stress on social abilities and serotonergic functions across generations in mice. PLoS ONE. 2011;6:e21842.
     

  • Kozorovitskiy Y, Hughes M, Lee K, Gould E. Fatherhood affects dendritic spines and vasopressin V1a receptors in the primate prefrontal cortex. Nat Neurosci. 2006;9:1094–1095. 
     

  • Braun K, Bock J. The experience-dependent maturation of prefronto-limbic circuits and the origin of developmental psychopathology: Implications for the pathogenesis and therapy of behavioral disorders. Dev Med Child Neurol. 2011;15(Suppl 4):14–18. 
     

  • Chugani HT, Phelps ME. Maturational changes in cerebral function in infants determined by 18FDG positron emission tomography. Science. 1986;231(4740):840–843.
     

  • Derks PL, Paclisanu MI. Simple strategies in binary prediction by children and adults. Journal of Experimental Psychology. 1967;73(2):278–285.
     

  • Diamond A. Evidence for the importance of dopamine for prefrontal cortex functions early in life. Philosophical Transactions of the Royal Society of London, Series B: Biological Sciences. 1996;351(1346):1483–1493. discussion 1494. 
     

  • Diamond A, Doar B. The performance of human infants on a measure of frontal cortex function, the delayed response task. Developmental Psychobiology. 1989;22(3):271–294.
     

  • Ellenbogen JM, Hu PT, Payne JD, Titone D, Walker MP. Human relational memory requires time and sleep. Proceedings of the National Academy of Sciences. 2007;104(18):7723–7728.
     

  • Farah MJ, Shera DM, Savage JH, Betancourt L, Giannetta JM, Brodsky NL, et al. Childhood poverty: specific associations with neurocognitive development. Brain Research. 2006;1110(1):166–174. 
     

  • German TP, Defeyter MA. Immunity to functional fixedness in young children. Psychonomic Bulletin & Review. 2000;7(4):707–712. 
     

  • Huttenlocher PR, Dabholkar AS. Regional differences in synaptogenesis in human cerebral cortex. Journal of Comparative Neurology. 1997;387(2):167–178. 
     

  • Lieberman P. Uniquely human : the evolution of speech, thought, and selfless behavior. Cambridge, Mass: Harvard University Press; 1991. Mölle M, Marshall L, Wolf B, Fehm HL, Born J. EEG complexity and performance measures of creative thinking. Psychophysiology. 1999;36:95–104. 
     

  • Perez-Garci E, del-Rio-Portilla Y, Guevara MA, Arce C, Corsi-Cabrera M. Paradoxical sleep is characterized by uncoupled gamma activity between frontal and perceptual cortical regions. Sleep. 2001;24(1):118–126. 
     

  • van Eden CG, Kros JM, Uylings HBM. The development of the rat prefrontal cortex. Its size and development of connections with thalamus, spinal cord and other cortical areas. Prog Brain Res. 1990;85:169–183. 
     

  •  Wolford G, Miller MB, Gazzaniga M. Journal of Neuroscience. 6. Vol. 20. 2000. The left hemisphere's role in hypothesis formation; p. RC64. 
     

  •  Xu F, Tenenbaum JB. Sensitivity to sampling in Bayesian word learning. Developmental Science. 2007;10:288–297.

Do You Want to Improve
Your Emotional Life?

Hello, My name is Louis Scotti, I would like to help you improve your emotional life.

The Question is do you want to improve control over your emotions.

May I have your name and email to send you updates and information about upcoming events.

Thank you, I appreciate your interest, Louis Scotti

  • Facebook
  • YouTube
  • LinkedIn
  • Instagram

About

Courses

©2021 by Our Emotional Life.